What is the difference between LED and LCD display?

Although there are big differences between LCD and LED displays, there are a lot of confusion in the market which shouldn’t happen. Part of the confusion comes from the manufacturers. We will clarify as below.

LCD Displays vs LED Displays

LCD stands for “liquid crystal display”. LCD can’t emit light itself; it has to use a backlight. In the old days, manufacturers used to use CCFL (cold cathode fluorescent lamps) as backlight, which is bulky and not environment friendly. Then, with the development of LED (light emitting diode ) technology, more and more backlights use LEDs. The manufacturers name them as LED monitors or TV which makes the consumers think they are buying LED displays. But technically, both LED and LCD TVs are liquid crystal displays. The basic technology is the same in that both television types have two layers of polarized glass through which the liquid crystals both block and pass light. So really, LED TVs are a subset of LCD TVs.

Quantum Dot Displays

Quantum-dot TVs are also widely discussed for recent years. It is basically a new type of LED-backlit LCD TV. The image is created just like it is on an LCD screen, but quantum-dot technology enhances the color.

For normal LCD displays, when you light up the display, all the LEDs light up even for unwanted area (for example, some areas need black). Whatever perfect the LCD display made, there is still small percentage of light transmitting through the LCD display which makes it difficult to make the super black background. The contrast decreases.
Quantum-dot TV can have full-array backlit quantum-dot sets with local-dimming technology (good for image uniformity and deeper blacks). There can be edge-lit quantum-dot sets with no local dimming (thinner, but you may see light banding and grayer blacks).

Photo-emissive quantum dot particles are used in RGB filters, replacing traditional colored photoresists with a QD layer. The quantum dots are excited by the blue light from the display panel to emit pure basic colors, which reduces light losses and color crosstalk in RGB filters, improving display brightness and color gamut. Although this technology is primarily used in LED-backlit LCDs, it is applicable to other display technologies which use color filters, such as blue/UV AMOLED(Active Matrix Organic Light Emitting Diodes)/QNED(Quantum nano-emitting diode)/Micro LED display panels. LED-backlit LCDs are the main application of quantum dots, where they are used to offer an alternative to very expensive OLED displays.

Micro LEDs and Mini LEDs

Micro LED is true LED display without hiding at the backside of the LCD display as backlight. It is an emerging flat-panel display technology. Micro LED displays consist of arrays of microscopic LEDs forming the individual pixel elements. When compared with widespread LCD technology, micro-LED displays offer better contrast, response times, and energy efficiency.

Micro LEDs can be used at small, low-energy devices such as AR glasses, VR headsets, smartwatches and smartphones. Micro LED offers greatly reduced energy requirements when compared to conventional LCD systems while has very high contrast ratio. The inorganic nature of micro-LEDs gives them a long lifetime of more than 100,000 hours.

As of 2020, micro LED displays have not been mass-produced, though Sony, Samsung and Konka sell microLED video walls and Luumii mass produces microLED lighting. LG, Tianma, PlayNitride, TCL/CSoT, Jasper Display, Jade Bird Display, Plessey Semiconductors Ltd, and Ostendo Technologies, Inc. have demonstrated prototypes. Sony and Freedeo already sells microLED displays as a replacement for conventional cinema screens. BOE, Epistar and Leyard have plans for microLED mass production. MicroLED can be made flexible and transparent, just like OLEDs.
There are some confusions between mini-LED used in LCD backlight as Quantum dot displays. To our understanding, mini-LED is just bigger size of micro LED which can be used for larger size of cinema screen, advertisement walls, high end home cinema etc. When discussing Mini-LED and Micro-LED, a very common feature to distinguish the two is the LED size. Both Mini-LED and Micro-LED are based on inorganic LEDs. As the names indicate, Mini-LEDs are considered as LEDs in the millimeter range while Micro-LEDs are in the micrometer range. However, in reality, the distinction is not so strict, and the definition may vary from person to person. But it is commonly accepted that micro-LEDs are under 100 µm size, and even under 50 µm, while mini-LEDs are much larger.

When applied in the display industry, size is just one factor when people are talking about Mini-LED and Micro-LED displays. Another feature is the LED thickness and substrate. Mini-LEDs usually have a large thickness of over 100 µm, largely due to the existence of LED substrates. While Micro-LEDs are usually substrate less and therefore the finished LEDs are extremely thin.
A third feature that is used to distinguish the two is the mass transfer techniques that are utilized to handle the LEDs. Mini-LEDs usually adopt conventional pick and place techniques including surface mounting technology. Every time the number of LEDs that can be transferred is limited. For Micro-LEDs, usually millions of LEDs need to be transferred when a heterogenous target substrate is used, therefore the number of LEDs to be transferred at a time is significantly larger, and thus disruptive mass transfer technique should be considered.

It is exciting to see all the kinds of display technologies which make our world colorful. We definitely believe that LCD and/or LED displays will pay very important roles in the future metaverse.
If you have any questions about Orient Display displays and touch panels. Please feel free to contact: Sales Inquiries, Customer Service or Technical Support.

Difference between resistive and capacitive touch panel

Capacitive Touch Screen

Projected capacitive touch screen contains X and Y electrodes with insulation layer between them. The transparent electrodes are normally made into diamond pattern with ITO and with metal bridge.

Human body is conductive because it contains water. Projected capacitive technology makes use of conductivity of human body. When a bare finger touches the sensor with the pattern of X and Y electrodes, a capacitance coupling happens between the human finger and the electrodes which makes change of the electrostatic capacitance between the X and Y electrodes. The touchscreen controller detects the electrostatic field change and the location.

Resistive Touch Screen

A resistive touch screen is made of a glass substrate as the bottom layer and a film substrate (normally, clear poly-carbonate or PET) as the top layer, each coated with a transparent conductive layer (ITO: Indium Tin Oxide), separated by spacer dots to make a small air gap. The two conducting layers of material (ITO) face each other. When a user touches the part of the screen with finger or a stylus, the conductive ITO thin layers contacted. It changes the resistance. The RTP controller detects the change and calculate the touch position. The point of contact is detected by this change in voltage.

Which Is Better Capacitive or Resistive Touchscreen?

  Resistive Touch Screen Capacitive Touch Screen
Manufacturing Process Simple More complicated
Cost Lower Higher: Depending on size, number of touches
Touch Screen Control Type Requires pressure on the touchscreen. Can sense proximity of finger.
Power Consumption Lower Higher
touch with thick gloves Always good more expensive, need special touch controller
Touch Points Single Touch Only Single, two, gesture or Multi-Touch 
Touch Sensitivity Low High (Adjustable)
Touch Resolution High Relatively low
Touch Material Any type Fingers. Can be designed to use other materials like glove, stylus, pencil etc.
False Touch Rejection False touches can result when two fingers touch the screen at same time. Good Performance
Immunity to EMI Good Need to special design for EMI
Image Clarity Less transparent and smoky looking Very high transparent especially with optical bonding and surface treatment
Sliders or Rotary Knobs Possible, but not easy to use Very good
Cover Glass None Flexible with different shapes, colors, holes etc.
Overlay Can be done No
Curve Surface Difficult Available
Size Small to medium Small to very big size
Immunity to Objects/Contaminants on Screen Good Need to special design to avoid false touch
Resistant to Chemical Cleaners No Good
Durability Good Excellent
Impact Ball Drop Test Surface film protected Need special design for smash
Scratch Resistance As high as 3H As high as 9H
UV Degradation Protection Less protection Very good

What Are Resistive Touch Screens Used For?

Resistive touch screens still reign in cost-sensitive applications. They also prevail in point-of-sale terminals, industrial, automotive, and medical applications.

What Are Capacitive Touch Screens Used For?

Projected Capacitive Touch Panel (PCAP) was actually invented 10 years earlier than the first resistive touchscreen. But it was no popular until Apple first used it in iPhone in 2007. After that, PCAP dominates the touch market, such as mobile phones, IT, automotive, home appliances, industrial, IoT, military, aviation, ATMs, kiosks, Android cell phones etc.

If you have any questions about Orient Display capacitive touch panels. Please feel free to contact: Sales Inquiries, Customer Service or Technical Support.

Pros and Cons of Resistive Touchscreens

A resistive touch screen is made of a glass substrate as the bottom layer and a film substrate (normally, clear poly-carbonate or PET) as the top layer, each coated with a transparent conductive layer (ITO: Indium Tin Oxide), separated by spacer dots to make a small air gap. The two conducting layers of material (ITO) face each other. When a user touches the part of the screen with finger or a stylus, the conductive ITO thin layers contacted. It changes the resistance. The RTP controller detects the change and calculate the touch position. The point of contact is detected by this change in voltage.

Pros of Resistive Touchscreen

One of the main reasons why resistive touch panels still exist is its simple manufacturing process and low production cost. The MOQ (Minimum Order Quantity) and NRE (Non-Recurring Expense) are low. The driving is simple and low cost. The power consumption is low too. Resistive touch panel also immune to EMI well. Although it can’t use cover lens at the surface, the overlay can make it flexible for designs.

Resistive touchscreens offer an unparalleled level of durability. Manufacturing companies, restaurants and retailers often prefer them over other types of touchscreens for this very reason. With their durable construction, resistive touchscreens can withstand moisture and stress without succumbing to damage.

You can control a resistive touchscreen using a stylus or while wearing gloves. Most capacitive touchscreens only register commands performed with a bare finger (or a special capacitive stylus). If you use a stylus or a gloved finger to tap the interface, the capacitive touchscreen won’t respond to your command. Resistive touchscreens register and respond to all forms of input, though. You can control them with a bare finger, a gloved finger, a stylus or pretty much any other object.

Cons of Resistive Touchscreen

The biggest advantages for resistive touch panel are its touch experience and clarity. It can only be used for single touch, no gestures or multi-touch. False touches can be generated if using two or more fingers to touch it.

Resistive touch panel’s transparency is relatively low. In order to prevent Newton rings or fingerprint mark, sometimes AG(anti-glare) film has to be used to make it look more smoky. Optical bonding can’t be used for RTP. The surface of resistive touch panel is soft and easily get scratched.

There are still a few potential cons associated with resistive touchscreens. When compared to capacitive touchscreens, resistive touchscreens aren’t as sensitive. They are still responsive, but you’ll have to tap or press the interface with greater force for a resistive touchscreen to recognize your input.

Resistive touchscreens usually offer lower display resolutions than capacitive touchscreens. Granted, not all applications require a high-resolution display. If a touchscreen is used as a point-of-sale (POS) system in a retail environment, for example, resolution shouldn’t be a concern.

If you have any questions about Orient Display capacitive touch panels. Please feel free to contact: Sales Inquiries, Customer Service or Technical Support.

Pros and Cons of Capacitive Touchscreens

Capacitive Touch Screen (PCAP)

Projected capacitive touchscreen contains X and Y electrodes with insulation layer between them. The transparent electrodes are normally made into diamond pattern with ITO and with metal bridge.

Human body is conductive because it contains water. Projected capacitive technology makes use of conductivity of human body. When a bare finger touches the sensor with the pattern of X and Y electrodes, a capacitance coupling happens between the human finger and the electrodes which makes change of the electrostatic capacitance between the X and Y electrodes. The touchscreen controller detects the electrostatic field change and the location.

Pros of Capacitive Touchscreen (CTP)

  • Looks sharper and brighter

    Capacitive Touch Screen uses glass substrate which has high transparency compared with plastic film used by resistive touch panels. Plus, optical bonding and glass surface treatment which make CTP good picture quality and contrast.
  • Better Human Machine Experience

    Because capacitive touchscreens register touch via the human body’s electrical current, they require less operating pressure than resistive touch panel glass. It supports touch gestures and multi-touch which makes it much better user experience of touch.
  • Incredible durability

    Because the cover glass is used in front which can be extremely high hardness (>9H), it is extremely durable for touch which can exceed 10 million touches. It also prevents from scratches and easy to clean which makes it prevailing resistive touch panels.
  • Size and Appearance

    Capacitive touchscreen can be made for very large size (100 inches) and the cover lens can be decorated with different colors, shapes, holes to provide users flexible designs.

Cons of Capacitive Touchscreen (CTP)

  • Cost

    Capacitive Touchscreen manufacturing process is relatively more expensive and the cost can be high.
  • Immunity to Objects/Contaminants on Screen

    Capacitive Touchscreen needs special design and uses special controllers to make it used in special applications, such as using glove to touch, or with water, salt water environment. The cost can be even higher.
  • Damage

    The cover lens can crack. In order to prevent glass debris to fly, a film or optical bonding is needed in the manufacturing process to make the price even higher.
  • Interferes

    Capacitive Touchscreen is easily to be affected by ESD or EMI, special designs have to be considered in the design which can drive the price higher. Special calibration has to be carried out with the help of the controller manufacturer.
  • Power and wake up

    The power used in capacitive Touchscreen can be higher than resistive touch panel. Sometimes, a hot button has to be designed to wake up the touch function.

If you have any questions about Orient Display capacitive touch panels. Please feel free to contact: Sales Inquiries, Customer Service or Technical Support.

How to fix LCD display problems?

 

LCD screen display problem why does it occur?

Liquid crystal displays (LCDs) are the most widely used display technology. Their applications cover TV, mobile phone, appliances, automotive, smart home, industrial meters, consumer electronics, POS, marine, aerospace, military etc. LCD screen display problem can occur for several reasons.

  • Effect of environmental conditions on the LCD assembly. Environmental conditions include both the effects of temperature and humidity, and cyclic loading.
  • Effects of handling conditions on the LCD. Handling can include bending, repetitive shock, and drop loading conditions.
  • Effect of manufacturing process. With the development of LCD for more than 40 years and the modern manufacturing equipment, this kind if defects are getting rear.

Common failures seen in LCDs are a decrease in screen contrast, non-functioning pixels or the whole display, and broken glass. Different kinds of LCD display problem need to have different kinds of fix methods or make the decision not worthwhile to repair.

LCD display problem – How to fix it?

  • Broken glassIf you accidently drop the LCD and you find it broken on the surface but the display still works. You might just break the touch panel; you can find a repair house or find a youtube video to replace the touch panel. If you find the display not showing, especially you find the fluid leaking out. You need to reply the whole display modules.
  • Dim LCD displayLCD can’t emit light itself. It uses backlight. Normally, the backlight is not fully driven, you can increase the LED backlight to make a dim LCD display brighter. But if you LCD display has been used for a long time, it is possible that the LED backlight has to be the end of life (not brightness enough) if you turn on 100% backlight brightness. In that case to fix LCD screen, you have to find a way to change the backlight. For some display, it is an easy job but it can be difficult for other displays depending on the manufacturing process.
  • Image sticking (Ghosting)Sometimes, you will find the previous image still appearing at the background even if you change to another image. It is also called burn in. This kind of failure doesn’t need to repair by professionals. You can simply shut off the display overnight, this kind of problem will go away. Please do remember that displaying a static image for a long time should be avoided.
    Display including backlight completely dead

    LCD screen display problem – the most common cases

    With the modern manufacturing process and design, this kind of failure rarely happens. Normally, it is caused by no power. Please check if the battery dead or adapter (power supply) failure or even check if you have plug in firmly or with the wrong power supply. 99% the display will be back on.

  • LCD has white screen – If a LCD has a white screen which means the backlight is good. Simply check your signal input sources which are the most causes. It can also be caused by the display totally damaged by ESD or excess heat, shock which make the LCD controller broken or the connection failure which has to be repaired by professionals.
  • Blur ImagesAs the LCD images are made of RGB pixels, the screen shouldn’t be blur like old CRT displays. If you do see blur images, they might be caused by two reasons. 1) LCD has certain response time, if you are playing games or watch fast action movies, some old LCD displays can have image delays. 2) The surface of the LCD is made of a layer of plastic film with maximum hardness of 3H. If you clean the surface often or use the wrong detergent or solvent which cause the surface damage. To fix damage on LED screen it’s need to be changed with professionals.

If you have any questions about Orient Display displays and touch panels. Please feel free to contact: Sales Inquiries, Customer Service or Technical Support.

Check Also: Bistable LCD

How does a Graphic LCD work?

An Introduction to Graphic LCD Displays

Graphic LCD Displays normally refer to monochrome graphics LCD displays or dot matrix LCD displays. Although color TFT (Thin Film Transistor) and OLED (Organic Light Emitting Diodes) displays to meet all the definitions of graphic LCD displays and can also be categorized as graphic LCD displays, monochrome graphics LCD displays have been in the market much earlier than color TFT displays and they become the legacy type of display. That is the reason that Graphic LCD displays only refer to monochrome, not the full color.

What are Graphic LCD Displays?

Compared with Character LCD Displays which can only display digits or alphanumeric, graphic LCD displays can display digits, alphanumeric, and graphics. They played very important roles in the early stages of LCD display history.

Graphic LCD displays are identified by the number of pixels in vertical and horizontal directions. For example, 128 x 64 dot matrix graphic display has 128 dots/pixels along the X axis, or horizontal, and 64 dots/pixels along the Y-axis or Vertical. Each of these dots sometimes referred to as a pixel, can be turned ON and OFF independently of each other. The customer makes use of software to tell each dot when to turn ON and OFF. The early engineering work has to light/map pixel by pixel, which is very tedious work. Thanks to the LCD controller advancement, Some Orient Display graphic LCD products have many images in the memory already which greatly helps engineers to reduce the workload and make the products much faster to the market. Please check with our engineers for details.

Orient Display provides dot matrix formats of 122×32, 128×64, 128×128, 160×32, 160×64, 160×160, 192×48, 192×64,202×32, 240×64, 240×160, 240×128, 282×128, 320×240 etc.

Graphic LCD Interface

There are some popular graphic LCD interfaces, such as 8 bit or 16 bit 6800 and/or 8080 MCU interface, 3 or 4 wire SPI interface, I2C interface etc.

Fluid Options of a Graphic LCD Display

There are many options for graphic LCD displays, all of them derived from STN (Super-Twisted Nematic Display). TN (Twisted Nematic Display) or HTN (High-performance TN) displays are rarely used in graphic LCD displays because of their poor contrast and narrow viewing angles.

  • Positive displays can include: yellow-green STN, gray STN, positive FSTN;
  • Negative displays can include: blue STN, negative FSTN, FFSTN, ASTN;

Backlight Options of a Graphic LCD Display

LCD itself can’t emit light. In order to be observed under the dim light, the backlight has to be used. Back to 10 years ago, Backlight can be LED (Light Emitting Diode), CCFL (Cold Cathode Fluorescent Lamps) or EL (Electroluminescent) backlight. Thanks to the development of LED technology, especially the breakthrough of the blue and white LED technologies, LED backlight dominates the market. LED backlight can be made either bottom lit and side lit with various colors For more information, please refer to Orient Display Jazz Graphic LCD Display and Backlights.

Graphic LCD Display Controller and Drivers

The LCD controller is a small microprocessor that converts the customer’s software code (aka firmware) to information that the LCD can understand. LCD Drivers control the complex AC voltage requirements for the LCDs and they need a LCD controller to keep refreshing the individual pixel information to their drive circuitry. These ICs will typically be integrated into the LCD Modules either by COG (Chip on Glass) or COB (Chip on Board) technologies.

Sitronix is the world’s biggest graphic LCD controller manufacturers. The headache for most engineers is that LCD controllers can EOL (End of Life) a lot. Please make sure to discuss with Orient Display engineers for the most updated information to keep 5-10 years supply life.

How to use a graphic LCD Display?

An Introduction to Graphic LCD Displays

Graphic LCDs (liquid crystal displays) have a special position in the display industry. With the fast development of gadgets and digital devices, manufacturers need the latest technologies and techniques to provide high-quality products and services.

Graphic LCD Displays normally refer to monochrome graphics LCD displays or dot matrix LCD displays. Although color TFT (Thin Film Transistor) and OLED (Organic Light Emitting Diodes) displays to meet all the definitions of graphic LCD displays and can also be categorized as graphic LCD displays, monochrome graphics LCD displays have been in the market much earlier than color TFT displays and they become the legacy type of display. That is the reason that Graphic LCD displays only refer to monochrome, not the full color.

Graphic LCD Interface

There are some popular graphic LCD interfaces, such as 8 bit or 16 bit 6800 and/or 8080 MCU interface, 3 or 4 wire SPI interface, I2C interface etc.

Applications

LCD modules are used in various devices and applications. They make it possible for mobile phones, laptops, and televisions to produce clear images. They can also be seen in watches, calculators, and digital readers to help users read text easily. Moreover, the automotive industry is utilizing this technology as well. Car manufacturers integrate them into interior designs to provide a display of various information and allow access to services such as GPS navigation.

Benefits

Low cost, easy to manufacture, low power consumption are the main benefits for monochrome graphic displays.

Graphic LCD tutorial

In this tutorial, the working and pinout of 128×64 graphical LCD AMG12864AR-B-Y6WFDY-AT-NV-Y (2.9″ 128×64 Graphic LCD Module) will be described. It has 128 columns and 64 rows, 128×64 has 128×64=8192 dots.

Graphical LCD controller

Graphical LCD is controlled by two S6B0108 controllers. A single S6B0108 controller is capable of controlling 4096 dots. So, for controlling a graphical LCD we need two S6B0108 controllers.

Further graphical LCD half’s division

Each half is further divided into 8 pages of equal sizes. Each page size is 8 rows and 64 columns. Each page contains 8*64=512 dots.

Page distribution in Pixels

Each page contains 64 pixels (64 columns and 8 rows). output on these pixels. Each pixel lights up when it is 0 and becomes off when it is 1. Each pixel contains 8 dots.

Graphical Lcd (128×64) Pinout

Please refer to Page 8 of the AMC12864A specification.

Graphical LCD pins are the same as other character LCDs. Only two new pins are introduced with the graphical LCD. These are CS1 and CS2. CS1 is chip select 1 it selects the first half or first S6B0108 controller of LCD. CS2 is chip select 2 it selects the second half or second S6B0108 controller of LCD. Both CS1 and CS2 are active low. By active-low I mean for selecting a first or second half, make its associated pin (CS1, CS2) low 0. All the other pins E (enable) R/W (read/write) RS or D/I (register select) works in the same way as for normal LCDs.

Like other LCDs we also first have to initialize graphical LCD.

Types of TFT LCD Technology

TFT (Thin Film Transistor) LCD (Liquid Crystal Display) dominates the world flat panel display market now. Thanks for its low cost, sharp colors, acceptable view angles, low power consumption, manufacturing friendly design, slim physical structure etc., it has driven CRT(Cathode-Ray Tube) VFD ( Vacuum Fluorescent Display) out of market, squeezed LED (Light Emitting Diode) displays only to large size display area. TFT LCD displays find wide applications in TV, computer monitors, medical, appliance, automotive, kiosk, POS terminals, low end mobile phones, marine, aerospace, industrial meters, smart homes, handheld devices, video game systems, projectors, consumer electronic products, advertisement etc. For more information about TFT displays, please visit our knowledge base.

What we are talking about TFT LCD, it is a LCD that uses TFT technology to improve image qualities such as addressability and contrast. A TFT LCD is an active matrix LCD, in contrast to passive matrix LCDs or simple, direct-driven LCDs with a few segments without TFT in each pixel.

There are many types of TFT LCD Technology. Different TFT LCD technology has different characters and applications.

TN (Twisted Nematic) Type

The TN type TFT LCD display is one of the oldest and lowest cost type of LCD display technology. TN TFT LCD displays have the advantages of fast response times, but its main advantages are poor color reproduction and narrow viewing angles. Colors will shift with the viewing angle. To make things worse, it has a viewing angle with gray scale inversion issue. Scientist and engineers took great effort trying to resolve the main genetic issues. Now, TN displays can look significantly better than older TN displays from decades earlier, but overall TN TFT LCD display has inferior viewing angles and poor color in comparison to other TFT LCD technologies.

IPS (In-plane switching) Type

IPS TFT LCD display was developed by Hitachi Ltd. in 1996 to improve on the poor viewing angle and the poor color reproduction of TN panels. Its name comes from its in-cell twist/switch difference compared with TN LCD panels. The liquid crystal molecules move parallel to the panel plane instead of perpendicular to it. This change reduces the amount of light scattering in the matrix, which gives IPS its characteristic of much improved wide viewing angles and color reproduction. But IPS TFT display has the disadvantages of lower panel transmission rate and higher production cost compared with TN type TFT displays, but these flaws can’t prevent it to be used in high end display applications which need superior color, contrast, viewing angle and crispy images.

MVA (Multi-Domain Vertical Alignment) Type

Fujitsu invented Multi-domain Vertical Alignment (MVA) technology.

The mono-domain VA technology is widely used for monochrome LCD displays to provide pure black background and better contrast, its uniformly alignment of the liquid crystal molecules makes the brightness changing with the viewing angle.
MVA solves this problem by causing the liquid crystal molecules to have more than one direction on a single pixel. This is done by dividing the pixel into two or four regions – called domains – and by using protrusions on the glass surfaces to pretilt the liquid crystal molecules in the different directions. In this way, the brightness of the LCD display can be made to appear uniform over a wide range of viewing angles.

MVA is still used in some applications but it is gradually replaced by IPS TFT LCD Display.

AFFS (Advanced Fringe Field Switching) Type

This is an LCD technology derived from the IPS by Boe-Hydis of Korea. Known as fringe field switching (FFS) until 2003, advanced fringe field switching is a technology similar to IPS offering superior performance and color gamut with high luminosity. Color shift and deviation caused by light leakage is corrected by optimizing the white gamut, which also enhances white/grey reproduction. AFFS is developed by Hydis Technologies Co., Ltd, Korea (formally Hyundai Electronics, LCD Task Force).

In 2004, Hydis Technologies Co., Ltd licensed its AFFS patent to Japan’s Hitachi Displays. Hitachi is using AFFS to manufacture high end panels in their product line. In 2006, Hydis also licensed its AFFS to Sanyo Epson Imaging Devices Corporation. (Reference)

The AFFS is similar to the IPS in concept; both align the crystal molecules in a parallel-to-substrate manner, improving viewing angles. However, the AFFS is more advanced and can better optimize power consumption. Most notably, AFFS has high transmittance, meaning that less of the light energy is absorbed within the liquid crystal layer and more is transmitted towards the surface. IPS TFT LCDs typically have lower transmittances, hence the need for the brighter backlight. This transmittance difference is rooted in the AFFS’s compact, maximized active cell space beneath each pixel.

AFFS has been used in high end LCD applications, like high end cell.phone because of its superb contrast, brightness and color stability.

If you have any questions about Orient Display technologies and products, feel free to contact our engineers for details.

 

Reference:

Related articles:

How to choose a TFT LCD Display Module?

TFT (Thin Film Transistor) LCD (Liquid Crystal Display) dominates the world flat panel display market now. Thanks for its low cost, sharp colors, acceptable view angles, low power consumption, manufacturing friendly design, slim physical structure etc., it has driven CRT(Cathode-Ray Tube) VFD ( Vacuum Fluorescent Display) out of market, squeezed LED (Light Emitting Diode) displays only to large size display area. TFT LCD displays find wide applications in TV, computer monitors, medical, appliance, automotive, kiosk, POS terminals, low end mobile phones, marine, aerospace, industrial meters, smart homes, handheld devices, video game systems, projectors, consumer electronic products, advertisement etc. For more information about TFT displays, please visit our knowledge base.

There a lot of considerations for how to choose a most suitable TFT LCD display module for your application. Please find the check list below to see if you can find a right fit.

Size

  • It is the start point for every project. There are two dimensions to consider: outside dimension (width, height, thickness) and AA (active area or pixel area). Orient Display’s standard product line ranges from 1.0” to 32”. Our OLED size can go down to 0.66” which fit for wearable devices.

Resolution

  • Resolution will decide the clearance. Nobody likes to see a display showing pixel clearly. That is the reason for better resolution, going from QVGA, VGA to HD, FHD, 4K, 8K. But higher resolution means higher cost, power consumption, memory size, data transfer speed etc. Orient Display offers low resolution of 128×128 to HD, FHD, we are working on providing 4K for our customers. For full list of resolution available, please see Introduction: LCD Resolution

Aspect Ratio or Orientation

  • Orientation of either landscape or portrait has to be taken into consideration. Beside Aspect Ratio is also very important. You might be satisfied with 4:3 in the past, now, you might be willing to trying wider screen like 16:9 or even 21:9.

Brightness

  • TFT screen brightness selection is very important. You don’t want to be frustrated by LCD image washout under bright light or you drain the battery too fast by selecting a super brightness LCD but will be used indoor only. There are general guidance listed in the table below.

Orient Display offers standard brightness, medium brightness , high brightness, and high end sunlight readable IPS TFT LCD display products for our customers to choose from.

Viewing Angle

  • If the budget is tight, TN type TFT LCD can be chosen but there is viewing angle selection of either 6 o’clock or 12 o’clock. Gray scale inversion needs to be taken of carefully. If a high-end product is designed, you can pay premium to select IPS TFT LCD which doesn’t have the viewing angle issue.

Contrast Ratio

  • It is similar to viewing angle selection, TN type TFT LCD has lower contrast but lower cost, while IPS TFT LCD has much high contrast but normally with higher cost. Orient Display provides both selections.

Temperature

  • Normal TFT LCD displays provide wide enough temperature range for most of the applications. -20 to 70oC. But there are some (always) outdoor applications like -30 to 80oC or even wider, special liquid crystal fluid has to be used. Heater is needed for operating temperature requirement of -40oC. Normally, storage temperature is not an issue, many of Orient Display standard TFT display can handle -40 to 85oC, if you have any questions, feel free to contact our engineers for details.

Power Consumption

  • Power consideration can be critical in some hand-held devices. For a TFT LCD display module, backlight normally consumes more power than other part of the display. Dimming or totally shutdown backlight technology has to be used when not in use. For some extreme power sensitive application, sleep mode or even using memory on controller consideration has to be in design. Feel free to contact our engineers for details.

Interface

Orient Display provides a wide variety of interfaces, HDMI, RGB, LVDS, MIPI, SPI, RS232 and Parallel MCU(6800,8080).

  • Genetic Interfaces: Those are the interfaces which display or touch controller manufacturers provide, including parallel, MCU, SPI(,Serial Peripheral Interface), I2C, RGB (Red Green Blue), MIPI (Mobile Industry Processor Interface), LVDS (Low-Voltage Differential Signaling), eDP ( Embedded DisplayPort) etc. Orient Display has technologies to make the above interface exchangeable.
  • High Level Interfaces: Orient Display has technologies to make more advanced interfaces which are more convenient to non-display engineers, such as RS232, RS485, USB, VGA, HDMI etc. more information can be found in our serious products. TFT modules, Arduino TFT display, Raspberry Pi TFT display, Control Board.

Touch Panel

Touch panels have been a much better human machine interface which become widely popular. Orient Display has been investing heavy for capacitive touch screen sensor manufacturing capacity. Now, Orient Display factory is No.1 in the world for automotive capacitive touch screen which took around 18% market share in the world automotive market.

Orient can provide the traditional GG (Glass Glass) touch screen, OGS (One Glass Solution) touch screen, and PG (Plastic Glass) touch screen.

Based on the above three types of touch panel technology, Orient Display can also add different kinds of features like different material glove touch, water environment touch, salt water environment touch, hover touch, 3D (force) touch, haptic touch etc. Orient Display can also provide from very low cost fixed area button touch, single (one) finger touch, double finger (one finger+ one gesture) touch, 5 finger touch, 10 points touch or even 16 points touch

Considering the different shapes of the touch surface requirements, Orient Display can produce different shapes of 2D touch panel (rectangle, round, octagon etc.), or 2.5D touch screen (round edge and flat surface) or 3D (totally curved surface) touch panel.

Considering different strength requirements, Orient Display can provide low cost chemical tampered soda-lime glass, Asahi (AGC) Dragontrail glass and Corning high end Gorilla glass. With different thickness requirement, Orient Display can provide the thinnest 0.5mm OGS touch panel, to thickness more than 10mm tempered glass to prevent vandalizing, or different kinds of plastic touch panel to provide glass piece free (fear) or flexible substrates need.

Of course, Orient Display can also offer traditional RTP (Resistive Touch Panel) of 4-wire, 5-wire, 8-wire through our partners, which Orient Display can do integration to resistive touch screen displays.

Fully, Partial or Semi-Custom Solution

If you can’t find a very suitable TFT LCD Display in our product line, don’t be discouraged. The products listed on our website is only small part of standard products. We have thousands of standard products in our database, feel free to contact our engineers for details.

If you like to have a special display, Orient Display is always flexible to do partial custom solution. For example, to modify the FPC to different length or shape, or use as fewer pinouts as possible, or design an ultra-bright LCD display, or a cover lens with your company logo on it, or design an extreme low power or low cost TFT display etc. our engineers will help you to achieve the goals. The NER cost can start from hundreds of dollars to Thousands. In rare case, it can be tens of thousands of dollars.

A fully custom TFT LCD panel can have very high NRE cost. Depending on the size of the display, quantity and which generation production line to be used. The tooling cost can start from $100,000 to over $1M.

If you have any questions about Orient Display technologies and products, feel free to contact our engineers for details.

 

Related articles:

Pros and Cons of TFT Displays

TFT (Thin Film Transistor) LCD (Liquid Crystal Display) we are talking here is TN (Twisted Nematic) type TFT displays which is align with the term in the TV and computer market. Now, TFT displays have taken over the majority of low-end color display market. They have wide applications in TV, computer monitors, medical, appliance, automotive, kiosk, POS terminals, low end mobile phones, marine, aerospace, industrial meters, smart homes, consumer electronic products etc. For more information about TFT displays, please visit our knowledge base.

Talking about Pros and Cons of TFT displays, we need to clarify which display they are compared to. To some displays, TFT displays might have advantages, but compared with another display, the same character might become the disadvantages of TFT displays. We will try our best to make clear as below.

Pros of TFT Displays

  • Less Energy Consumption: Compared with CRT(Cathode-Ray Tube) VFD ( Vacuum Fluorescent Display) and LED (Light Emitting Diode) display, which made laptop possible.
  • Good visibility and color: Compared with old CSTN (Color Super Twisted Nematic) or passive LCDs
  • Good response time and viewing angle: Compared with old CSTN or passive LCDs
  • Good cost: Compared with high end IPS (In-Plane Switching) LCD displays, AMOLED (Active Matrix Organic LED) displays and recent micro-LED display.
  • Excellent physical design. TFT displays are very easy to design and integrated with other components, such as resistive and capacitive touch panels (RTP, CTP, PCAP) etc.
  • Minimum Eye Strain: Because TFT panel itself doesn’t emit light itself like CRT, LED, VFD. The light source is LED backlight which is filtered well with the TFT glass in front for the blue light.
  • Space efficient design (can be placed anywhere in your workspace on a rotational mount so you can turn it in all directions).

Cons of TFT Displays

  • More Energy Consumption: Compared with monochrome displays and OLED (PMOLED and AMOLED) display, which makes TFT displays less attractive in wearable device.
  • Poor color saturation: Compared with IPS LCD displays and AMOLED displays.
  • Poor response time and viewing angle: Compared with IPS LCD displays, AMOLED displays and recent micro-LED display. TFT displays still need to note viewing angle of 6 o’clock or 12 o’clock in the datasheet and still have the gray scale inversion issue.
  • High tooling cost: Depending on which generation production line to produce and also depending on its size. Building a TFT display fab normally need billions of dollars. For a big size display which needs high generation production line to produce. The NRE cost can be millions dollars.
  • Sunlight Readability: Because it is very expensive to produce transflective TFT LCD displays, in order to be readable under the sunlight, very bright LED backlight (> 1,000 nits) has to be used. The power needed is high and also need to deal with heat management. If used together with touch panel, expensive optical bonding (OCA or OCR) and surface treatment (AR, AF) technologies have to be used.

If you have any questions about Orient Display technologies and products, feel free to contact our engineers for details.

 

Related Articles: